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Overview

Zeta functions of algebraic varieties

For X an algebraic variety over a finite field Fq, the zeta function

ζ(X ,T ) =
∏
x∈X◦

(1− T [κ(x):Fq ])−1 = exp

( ∞∑
n=1

#X (Fqn)
T n

n

)
∈ ZJT K

is a rational function of T . That is because it is possible to a spectral
interpretation of ζ(X ,T ) consisting of a field K of characteristic 0;
finite-dimensional K -vector spaces Vi for i = 0, 1, . . . , 2 dim(X ); and
K -linear endomorphisms Fi on Vi satisfying the Lefschetz trace formula:

#X (Fqn) =

2 dim(X )∑
i=0

(−1)i trace(F n
i ,Vi ) (n = 1, 2, . . . ).

This then implies that

ζ(X ,T ) =

2 dim(X )∏
i=0

det(1− FiT ,Vi )
(−1)i+1

.
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Overview

Weil cohomology: `-adic versus p-adic

Such data are provided in a systematic way by Weil cohomology
constructions, of which there are two general types.

Grothendieck’s formalism of étale cohomology produces one Weil
cohomology theory with coefficients in Q` for each prime ` other than
p, the characteristic of Fq. This theory is quite rich, and has been the
basis for most new developments on geometric zeta functions.

Building on Dwork’s original proof of rationality (predating étale
cohomology!), Berthelot introduced rigid cohomology with coefficients
in a finite extension1 of Qp. (This relates explicitly to crystalline
cohomology for smooth proper varieties or Monsky-Washnitzer
cohomology for smooth affine varieties.) Recently, most formalism of
étale cohomology has been replicated for rigid cohomology.

1The residue field must contain Fq.
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Overview

Factorization of zeta functions and varieties

Suppose X is smooth proper over Fq. By Deligne’s analogue of the
Riemann hypothesis, there exists a unique factorization

ζ(X ,T ) =

2 dim(X )∏
i=0

Pi (T )(−1)
i+1

in which Pi (T ) ∈ 1 + TZ[T ] has all C-roots of absolute value q−i/2.

More precisely, Deligne (1974, 1980) showed that for the data Fi ,Vi arising
from `-adic étale cohomology, the polynomial Pi (T ) = det(1− FiT ,Vi )
has all C-roots of absolute value q−i/2. A variant of the second proof can
be executed with rigid cohomology (K, 2006).

There is a formal process for “factoring” X into pieces that account for
the individual Pi ; this is the theory of motives.
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Overview

Zeta functions and L-functions

Suppose now that X is a smooth proper variety over a number field K .
Then for the motive of weight i associated to X , one gets an L-function by
taking an Euler product

∏
p Lp(s) in which for almost all prime ideals p of

oK , we have Lp(s) = Pi (Norm(p)−s) where Pi is the corresponding factor
of the zeta function of the reduction of (an integral model of) X modulo p.

This may be familiar for X = E an elliptic curve. Over Fq, we have

P0(T ) = 1− T , P1(T ) = 1− aET + qT 2, P2(T ) = 1− qT .

Over K , for i = 0, 1, 2, the resulting L-functions are

ζK (s), L(E , s), ζK (s − 1)

where L(E , s) is (almost)
∏

p(1− aE ,pq
−s + q1−2s)−1 for q = Norm(p).

Similar considerations apply when X is a hyperelliptic (or arbitrary) curve.
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Overview

Computational aspects of Weil cohomology

With a few exceptions2, the only methods we know for computing ζ(X ,T )
are to explicitly compute the matrices via which Fi act on some basis of
Vi , for some choice of Weil cohomology.

The definition of étale cohomology, which quantifies over all covers in the
étale topology, is hard to make computationally effective. This can be
done for curves of low genus (using the Jacobian as in Schoof’s method)
and for motives attached to modular forms (Edixhoven et al.).

By contrast, rigid cohomology can be defined3 more concretely in terms of
differential forms on certain p-adic rigid analytic spaces. Correspondingly,
it tends to be a better source for algorithms.

2One exception is when one can actually count #X (Fqn ) for enough n to pin down
the rational function. Another is for curves of low genus over not-too-large fields, where
one can diagnose the order of the class group using baby step-giant step.

3More precisely, to put rigid cohomology on a sound footing it should also be defined
in the language of sites (Le Stum), then compared to more concrete constructions.
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Hyperelliptic curves

Zeta functions of hyperelliptic curves

For X a curve4 of genus g over Fq, we have

ζ(X ,T ) =
P1(T )

(1− T )(1− qT )
,

P1(T ) =

2g∑
i=0

aiT
i ∈ Z[T ], a0 = 1, ag+i = qiag−i .

The roots of P1(T ) in C lie on the circle |T | = q−1/2 (Weil). Aside: the
class group of X (a/k/a #J(Fq) for J the Jacobian of X ) has order P1(1).

As per the general setup, we wish to compute P1(T ) as det(1− FT ,V )
for suitable F acting on suitable V .

4As a scheme, we want X to be of finite type over Fq of dimension 1 and also
smooth, proper, and geometrically connected.

K.S. Kedlaya L-functions via deformations Trieste, August 24, 2017 9 / 18



Hyperelliptic curves

Zeta functions of hyperelliptic curves

For X a curve4 of genus g over Fq, we have

ζ(X ,T ) =
P1(T )

(1− T )(1− qT )
,

P1(T ) =

2g∑
i=0

aiT
i ∈ Z[T ], a0 = 1, ag+i = qiag−i .

The roots of P1(T ) in C lie on the circle |T | = q−1/2 (Weil). Aside: the
class group of X (a/k/a #J(Fq) for J the Jacobian of X ) has order P1(1).

As per the general setup, we wish to compute P1(T ) as det(1− FT ,V )
for suitable F acting on suitable V .

4As a scheme, we want X to be of finite type over Fq of dimension 1 and also
smooth, proper, and geometrically connected.

K.S. Kedlaya L-functions via deformations Trieste, August 24, 2017 9 / 18



Hyperelliptic curves

Zeta functions of hyperelliptic curves

For X a curve4 of genus g over Fq, we have

ζ(X ,T ) =
P1(T )

(1− T )(1− qT )
,

P1(T ) =

2g∑
i=0

aiT
i ∈ Z[T ], a0 = 1, ag+i = qiag−i .

The roots of P1(T ) in C lie on the circle |T | = q−1/2 (Weil). Aside: the
class group of X (a/k/a #J(Fq) for J the Jacobian of X ) has order P1(1).

As per the general setup, we wish to compute P1(T ) as det(1− FT ,V )
for suitable F acting on suitable V .

4As a scheme, we want X to be of finite type over Fq of dimension 1 and also
smooth, proper, and geometrically connected.

K.S. Kedlaya L-functions via deformations Trieste, August 24, 2017 9 / 18



Hyperelliptic curves

The direct cohomological method (...)

Suppose p 6= 2 and X is a hyperelliptic curve of genus g with a rational
Weierstrass point, which then admits an affine model y2 = Q(x) with Q
monic of degree 2g + 1. We may then take V to be the first (algebraic) de
Rham cohomology of a smooth lift of X over the unramified extension K
of Qp with residue field Fq.

Concretely, for Q̃ a monic lift of Q, we have V =
⊕2g−1

i=0 K · x idx2y , with a
quite explicit recipe for rewriting general differentials in terms of these.

The action of F is given by x 7→ xq and (as a series)

y 7→ yq

(
1 +

Q̃(xq)− Q̃(x)q

Q̃(x)q

)1/2

.

This leads to an algorithm implemented (and extended to cover p = 2 and
X without a rational Weierstrass point) in GP/Pari, Magma, and Sage.
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Hyperelliptic curves

The deformation method (Lauder): geometric picture

Let Xt be a family of hyperelliptic curves over Fq in one parameter t, lifted
to a family X̃t over K . Then the relative de Rham cohomology of X̃t over
the t-line forms a vector bundle of rank 2g away from the bad fibers, with
the added structure of a Gauss-Manin connection.

Moreover, over a certain rigid-analytic subspace of the t-line, this
connection admits a Frobenius structure which specializes to the Frobenius
matrices described on the previous slide.

This gives an alternate approach to computing zeta functions, which is
implemented in Magma (Hubrechts, Tuitman). There is also an
implementation by Sebastian Pancratz as an optional Sage package.

I will not demonstrate this here. It is much simpler to do so for
hypergeometric motives!
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Hyperelliptic curves

The deformation method: concrete interpretation

In the context of the previous slide, there exist a 2g × 2g matrix N over
K (t) with poles at the bad fibers5 and a 2g × 2g matrix F whose entries
are rigid analytic functions defined away from some neighborhoods of the
poles of N, satisfying the commutation relation

NF − pFσ(N) + t
dF

dt
= 0

where σ is the substitution t 7→ tp.

For any λ ∈ Fq, let [λ] ∈ K be its Teichmüller lift. Then F ([λ]) equals the
Frobenius matrix acting on some basis of the rigid cohomology of Xλ.

The matrix N can typically be computed easily. This imposes a differential
equation on the entries of F , which can be solved after establishing an
initial condition, e.g., by running the direct method on one fiber.

5and possibly more points depending on the choice of a basis of the vector bundle.
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Hypergeometric motives

Why are HGMs better examples than HECs?

To illustrate the deformation method, we will use hypergeometric motives
(HGMs) instead of hyperelliptic curves (HECs). Why?

For HECs, one must compute the Gauss-Manin connection for a
suitable one-parameter family. For HGMs, this is replaced with a
simple explicit formula.

For HECs, the connection may have many singularities, which
contribute to the complexity of subsequent calculations. For HGMs,
the only bad points are t = 0, 1,∞.

For HECs, we must develop6 power series solutions at some point.
For HGM, these are given explicitly by hypergeometric series.

For HECs, we need an outside source for the initial condition on
Frobenius. For HGMs, (conjecturally) there is an explicit formula.

6Silver lining: there is a quadratically convergent method for this.
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Hypergeometric motives

The hypergeometric trace formula

Magma’s HGM package computes Euler factors of the associated
L-functions using a trace formula derived from Greene’s finite
hypergeometric functions. The trace over Fq for the parameter t equals7

1

1− q

q−2∑
r=0

ωp(M/t)rQq(r)

where ωp is the Teichmüller character and

Qq(r) = (−1)m0qD+m0−mrGq(r)

where Gq(r) =
∏

v gq(rv)γv where

gq(a) =
∑
u∈F×

q

ωp(u)−aζ
traceFq/Fp (u)
p is a Gauss sum.

7The quantities M, D, mr , and v 7→ γv are independent of t; we omit the definitions.
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Hypergeometric motives

Traces vs. deformations

Following GP/Pari (Cohen), Magma (Watkins) computes the Gauss sum
gv (r) very efficiently using the Gross-Koblitz formula

gv (a) = −πSp(a)
f−1∏
i=0

Γp

(
a(i)

q − 1

)

where f = logp q; π is the (p − 1)-st root of −p for which ζp ≡ 1 + π

(mod π2); Sp(a) is the sum of the base-p digits of a; a(i) is the remainder
of p−ia modulo q − 1; and Γp is the p-adic Gamma function.

This works well for computing L-functions: if you want all Fourier
coefficients up to X , you only need traces for q ≤ X .

However, if you want all the Euler factors for p ≤ X (e.g., to compute
Sato-Tate statistics), you need traces for q = p1, . . . , pbd/2c where d is the
degree of the Euler factor. By contrast, deformation computes the whole
Frobenius matrix at once, so has complexity linear in p rather than q.
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A demonstration

Deformation for hypergeometric motives: demo

The remainder of the lecture consists of an explicit calculation of HGM
Euler factors using the deformation method. This demo is contained in a
Jupyter notebook: click here.

Disclaimer: the correctness of these calculations depends on various
missing facts. Some of these should be easy to obtain (e.g., the amount of
working p-adic and t-adic precision required to obtain the final answers)
and some may be more difficult (e.g., the formula for the initial condition
of the Frobenius structure).

Also, we do not claim that deformations can be used to compute bad
Euler factors. However, there are only finitely many for any given t,
corresponding to primes for which one of t, t−1, t − 1 has positive
valuation, so there is no need to optimize this.
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